Seminar-Peter Wahl
18/05/2011 15:00 (Seminarni mistnost budova A) »more info
Our paper published in PRL May 2011
»more info
Colloquium - R. Moeller
28/04/2011 15:00 (Seminarni mistnost budova A) »more info
Colloquium - A. Heinrich
21/03/2011 15:00 (Seminarni mistnost budova A) »more info
Seminar - Petr Klapetek
14/02/2011 14:00 (Zasedaci mistnost budova B) »more info
Seminar - Guy Le Lay
11/02/2011 11:00 (Seminarni mistnost budova A) »more info
Our paper published in PRL Jan 2011
»more info
Seminar András Berkó
15/11/2010 15:00 (Seminarni mistnost budova A) »more info
Seminar Martin Svec
14/11/2010 15:00 (Seminarni mistnost budova A) »more info
2nd QPlus workshop 8/10/10
2nd International QPlus Workshop 8.10.2010 »more info
Seminar Y. J. Dappe 25/5/10
25/5/2010 10:00 (Seminarni mistnost budova A) »more info
Seminar J. Repp 13/4/2010
14/3/2010 15:00 (Seminarni mistnost budova A) »more info
Seminar T. Novotny 2/3/2010
»more info
Seminar R. Martonak 23/2/10
»more info
4/2/10 Colloquium S. Lindsay
»more info
18/1/10 Our work highlighted on Nanotech.org website.
»more info
30/12/09 Our paper about atomic contrast of KPFM published in PRL
»more info
Seminar J.P. Lewis 9/12/09 14:00
»more info
Seminar P. Kocan 25/11/09 15:00
»more info
14.-15.10. 2009 workshop "Simultaneous STM/AFM measurements using tuning fork based sensors"
»more info
Quantum Point Contact Microscopy
Dr. Peter Wahl
Max-Planck-Institut für Festkörperforschung
Stuttgart, Germany
Scanning tunneling microscopy (STM) relies on probing a conductive surface in the evanescent tail of electronic states. By decreasing the tip-sample distance the sensitivity to chemical interactions can be enhanced as has been demonstrated in non-contact atomic force microscopy (AFM), where the oscillating tip comes for short periods of time within the range of chemical interactions. Here, I introduce Quantum Point Contact Microscopy (QPCM) as a novel imaging mode of STM, where instead of measuring a current through a tunneling junction, a transport current through a quantum point contact formed by a single atom between the STM tip and the surface is recorded. The single atom contact is scanned across the surface yielding a spatial map of conductance. QPCM is demonstrated for the (111)-surfaces of copper, silver, platinum and gold, where the atomic periodicity of the surface is routinely resolved. The alternating local atomic stacking due to the surface reconstruction is observed on Au(111) in real space in QPCM conductance maps. The perspectives for a detailed characterization of the surface chemical composition are demonstrated for an iron-platinum surface alloy. We observe local variations of the transport current due to changes in the chemical environment of the point contact. On Ag(111), we study the influence of coherent scattering at defects on quantum transport by spatially mapping the conductance fluctuations. Our measurements allow for a microscopic view of the influence of scattering on quantum transport.