News

Seminar-Peter Wahl
18/05/2011 15:00 (Seminarni mistnost budova A) »more info

Our paper published in PRL May 2011
»more info

Colloquium - R. Moeller
28/04/2011 15:00 (Seminarni mistnost budova A) »more info

Colloquium - A. Heinrich
21/03/2011 15:00 (Seminarni mistnost budova A) »more info

Seminar - Petr Klapetek
14/02/2011 14:00 (Zasedaci mistnost budova B) »more info

Seminar - Guy Le Lay
11/02/2011 11:00 (Seminarni mistnost budova A) »more info

Our paper published in PRL Jan 2011
»more info

Seminar András Berkó
15/11/2010 15:00 (Seminarni mistnost budova A) »more info

Seminar Martin Svec
14/11/2010 15:00 (Seminarni mistnost budova A) »more info

2nd QPlus workshop 8/10/10
2nd International QPlus Workshop 8.10.2010 »more info

Seminar Y. J. Dappe 25/5/10
25/5/2010 10:00 (Seminarni mistnost budova A) »more info

Seminar J. Repp 13/4/2010
14/3/2010 15:00 (Seminarni mistnost budova A) »more info

Seminar T. Novotny 2/3/2010
»more info

Seminar R. Martonak 23/2/10
»more info

4/2/10 Colloquium S. Lindsay
»more info

18/1/10 Our work highlighted on Nanotech.org website.
»more info

30/12/09 Our paper about atomic contrast of KPFM published in PRL
»more info

Seminar J.P. Lewis 9/12/09 14:00
»more info

Seminar P. Kocan 25/11/09 15:00
»more info

14.-15.10. 2009 workshop "Simultaneous STM/AFM measurements using tuning fork based sensors"
»more info

Seminar-Peter Wahl

 Quantum Point Contact Microscopy

Dr. Peter Wahl

Max-Planck-Institut für Festkörperforschung
Stuttgart, Germany

 

Scanning tunneling microscopy (STM) relies on probing a conductive surface in the evanescent tail of electronic states. By decreasing the tip-sample distance the sensitivity to chemical interactions can be enhanced as has been demonstrated in non-contact atomic force microscopy (AFM), where the oscillating tip comes for short periods of time within the range of chemical interactions. Here, I introduce Quantum Point Contact Microscopy (QPCM) as a novel imaging mode of STM, where instead of measuring a current through a tunneling junction, a transport current through a quantum point contact formed by a single atom between the STM tip and the surface is recorded. The single atom contact is scanned across the surface yielding a spatial map of conductance. QPCM is demonstrated for the (111)-surfaces of copper, silver, platinum and gold, where the atomic periodicity of the surface is routinely resolved. The alternating local atomic stacking due to the surface reconstruction is observed on Au(111) in real space in QPCM conductance maps. The perspectives for a detailed characterization of the surface chemical composition are demonstrated for an iron-platinum surface alloy. We observe local variations of the transport current due to changes in the chemical environment of the point contact. On Ag(111), we study the influence of coherent scattering at defects on quantum transport by spatially mapping the conductance fluctuations. Our measurements allow for a microscopic view of the influence of scattering on quantum transport.