|
List of Publications
Monographs
-
R. Hakl, A. Lomtatidze, J. Šremr,
Some boundary value problems for first order scalar functional differential equations, Folia Facul. Sci. Natur. Univ. Masar. Brun., Mathematica 10, Brno: Masaryk University, 2002, 300 pages.
-
J. Šremr,
On the initial value problem for two-dimensional linear functional differential systems,
Mem. Differential Equations Math. Phys. 50 (2010), 1-127.
Articles
-
A. Lomtatidze, J. Šremr,
On Oscillation of second-order linear ordinary differential equations,
Mem. Differential Equations Math. Phys. 54 (2011), 69-81.
-
I. Kiguradze, J. Šremr,
Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems,
Nonlin. Anal. 74 (2011), No. 17, 6537–6552.
-
A. Domoshnitsky, A. Lomtatidze, A. Maghakyan, J. Šremr,
Linear hyperbolic functional-differential equations with essentially bounded right-hand side,
Abstr. Appl. Anal. 2011 (2011), ID 242965, 1-26.
-
Z. Opluštil, J. Šremr,
Some oscillation criteria for the second-order linear delay differential equation,
Math. Bohem. 136 (2011), No. 2, 195-204.
-
J. Šremr,
Absolutely continuous functions of two variables in the sense of Carathéodory,
Electron. J. Diff. Equ. 2010 (2010), No. 154, 1-11.
-
A. Lomtatidze, Z. Opluštil, J. Šremr,
Nonpositive solutions to a certain functional differential inequality,
Nonlinear Oscil. 12 (2009), No. 4, 447-591.
-
A. Lomtatidze, Z. Opluštil, J. Šremr,
Solvability conditions for a nonlocal boundary value problem for linear functional differential equations,
Fasc. Math. 41 (2009), 81-96.
-
Z. Opluštil, J. Šremr,
On a non-local boundary value problem for linear functional differential equations,
Electron. J. Qual. Theory Differ. Equ. (2009), No. 36, 1-13.
-
J. Šremr,
On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type,
Proc. Edinb. Math. Soc. (2) 52 (2009), 241-262.
-
A. Lomtatidze, S. Mukhigulashvili, J. Šremr,
Nonnegative solutions of the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type,
Math. Comput. Modelling 47 (2008), No. 11-12, 1292-1313.
-
J. Šremr,
Weak theorems on differential inequalities for two-dimensional functional differential systems,
Port. Math. 65 (2008), No. 2, 157-189.
-
J. Šremr,
Some remarks on linear partial functional-differential inequalities of hyperbolic type,
Ukrain. Math. Zh. 60 (2008), No. 2, 283-292, in Russian.
-
R. Hakl, J. Šremr,
On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators,
Nonlinear Oscil. 10 (2007), No. 4, 569-582.
-
A. Lomtatidze, Z. Opluštil, J. Šremr,
On a nonlocal boundary value problem for first order linear functional differential equations,
Mem. Differential Equations Math. Phys. 41 (2007), 69-85.
-
J. Šremr,
Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators,
Math. Bohem. 132 (2007), No. 3, 263-295.
-
J. Šremr,
On the Cauchy type problem for systems of functional differential equations,
Nonlin. Anal. 67 (2007), No. 12, 3240-3260.
-
A. Rontó, J. Šremr,
Equivalent solutions of nonlinear equations in a topological vector space with a wedge,
J. Inequal. Appl. 2007 (2007), ID 46041, 1-25.
-
J. Šremr,
On the Cauchy type problem for two-dimensional functional differential systems,
Mem. Differential Equations Math. Phys. 40 (2007), 77-134.
-
J. Šremr,
On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators,
Fasc. Math. 37 (2007), 87-108.
-
J. Šremr,
A note on two-dimensional systems of linear differential inequalities with argument deviations,
Miskolc Math. Notes 7 (2006), No. 2, 171-187.
-
J. Šremr,
On systems of linear functional differential inequalities,
Georgian Math. J. 13 (2006), No. 3, 539-572.
-
S. Mukhigulashvili, J. Šremr,
On a two-point boundary value problem for the second order linear functional differential equations with monotone operators,
Func. Differ. Equ. 13 (2006), No. 3-4, 519-537.
-
S. Mukhigulashvili, J. Šremr,
On the solvability of the Dirichlet problem for nonlinear second-order functional-differential equations,
Differ. Equ. 41 (2005), No. 10, 1425-1435.
-
A. Rontó, J. Šremr,
Abstract differential inequalities and the Cauchy problem for infinite-dimensional linear functional differential equations,
J. Inequal. Appl. 2005 (2005), No. 3, 235-250.
-
R. Hakl, A. Lomtatidze, J. Šremr,
Solvability of a periodic type boundary value problem for first order scalar functional differential equations,
Arch. Math. (Brno) 40 (2004), No. 1, 89-109.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On nonnegative solutions of a periodic type boundary value problem for first order scalar functional differential equations,
Func. Differ. Equ. 11 (2004), No. 3-4, 363-394.
-
J. Šremr, P. Šremr,
On a two-point boundary value problem for first order linear differential equations with a deviating argument,
Mem. Differential Equations Math. Phys. 29 (2003), 75-124.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On a boundary-value problem of antiperiodic type for first-order nonlinear functional differential equations of non-Volterra type,
Nonlinear Oscil. 6 (2003), No. 4, 535-559.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On an antiperiodic type boundary value problem for first order linear functional differential equations,
Arch. Math. (Brno) 38 (2002), No. 2, 149-160.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On a boundary-value problem of periodic type for first-order linear functional differential equations,
Nonlinear Oscil. 5 (2002), No. 3, 408-425.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On a periodic type boundary value problem for first order nonlinear functional differential equations,
Nonlin. Anal. 51 (2002), 425-447.
-
R. Hakl, A. Lomtatidze, J. Šremr,
On constant sign solutions of a periodic type boundary value problem for first order scalar functional differential equations,
Mem. Differential Equations Math. Phys. 26 (2002), 65-90.
-
R. Hakl, A. Lomtatidze, J. Šremr,
Solvability and unique solvability of a periodic type boundary value problem for first order scalar functional differential equations,
Georgian Math. J. 9 (2002), No. 3, 525-547.
Preprints
-
J. Šremr,
On the Darboux problem for linear hyperbolic functional-differential equations,
Institute of Mathematics, AS CR, Preprint IM-2011-9 (2011).
Electronic reprint
-
J. Šremr,
On the Cauchy problem for linear hyperbolic functional-differential equations,
Institute of Mathematics, AS CR, Preprint 145 (2008).
Electronic reprint
-
J. Šremr,
A note on absolutely continuous functions of two variables in the sense of Carathéodory,
Institute of Mathematics, AS CR, Preprint 144 (2008).
Electronic reprint
-
J. Šremr,
On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators,
Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 162 (2005).
Electronic reprint
-
J. Šremr,
On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type,
Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 161 (2005).
Electronic reprint
-
S. Mukhigulashvili, A. Lomtatidze, J. Šremr,
Nonnegative solutions of the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type,
Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 160 (2005).
Electronic reprint
To appear
-
A. Lomtatidze, J. Šremr,
On oscillation of second-order linear ordinary differential equations,
Mem. Differential Equations Math. Phys..
Others
-
K. Pellant, J. Šremr, J. Mejzlík, A. Pellant,
Modelování; přenosových charakteristik zevního zvukovodu, Sborník semináře "Interakce a zpětné vazby" 2000, UT AV Praha, 2000.
-
K. Pellant, J. Mejzlík, A. Pellant, J. Šremr,
The Computational Procedure of Selected Acoustic Characteristics of the External Ear Canal, AAO-HNSF, 2000.
-
K. Pellant, J. Mejzlík, A. Pellant, J. Šremr,
Berechnung der akustischen parameter des auseren gehorganges an einem mathematischen model, Hals-Nasen-Ohrenarzte, Marburg, 2000.
|