Institute of Mathematics, Academy of Sciences of the Czech Republic, branch in Brno

List of Publications

Monographs
  1. R. Hakl, A. Lomtatidze, J. Šremr, Some boundary value problems for first order scalar functional differential equations, Folia Facul. Sci. Natur. Univ. Masar. Brun., Mathematica 10, Brno: Masaryk University, 2002, 300 pages.
  2. J. Šremr, On the initial value problem for two-dimensional linear functional differential systems, Mem. Differential Equations Math. Phys. 50 (2010), 1-127.
Articles
  1. J. Šremr, On differentiation of a Lebesgue integral with respect to a parameter, Math. Appl. 1 (2012), 91-116.
  2. A. Domoshnitsky, R. Hakl, J. Šremr, Component-wise positivity of solutions to periodic boundary problem for linear functional differential system, J. Inequal. Appl. 2012:112 (2012), 1-23.
  3. A. Lomtatidze, J. Šremr, On the Cauchy problem for linear hyperbolic functional-differential equations, Czechoslovak Math. J. 62 (137) (2012), No. 2, 391-440.
  4. A. Lomtatidze, J. Šremr, On Oscillation of second-order linear ordinary differential equations, Mem. Differential Equations Math. Phys. 54 (2011), 69-81.
  5. I. Kiguradze, J. Šremr, Solvability conditions for non-local boundary value problems for two-dimensional half-linear differential systems, Nonlin. Anal. 74 (2011), No. 17, 6537-6552.
  6. A. Domoshnitsky, A. Lomtatidze, A. Maghakyan, J. Šremr, Linear hyperbolic functional-differential equations with essentially bounded right-hand side, Abstr. Appl. Anal. 2011 (2011), ID 242965, 1-26.
  7. Z. Opluštil, J. Šremr, Some oscillation criteria for the second-order linear delay differential equation, Math. Bohem. 136 (2011), No. 2, 195-204.
  8. J. Šremr, Absolutely continuous functions of two variables in the sense of Carathéodory, Electron. J. Diff. Equ. 2010 (2010), No. 154, 1-11.
  9. A. Lomtatidze, Z. Opluštil, J. Šremr, Nonpositive solutions to a certain functional differential inequality, Nonlinear Oscil. 12 (2009), No. 4, 447-591.
  10. A. Lomtatidze, Z. Opluštil, J. Šremr, Solvability conditions for a nonlocal boundary value problem for linear functional differential equations, Fasc. Math. 41 (2009), 81-96.
  11. Z. Opluštil, J. Šremr, On a non-local boundary value problem for linear functional differential equations, Electron. J. Qual. Theory Differ. Equ. (2009), No. 36, 1-13.
  12. J. Šremr, On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type, Proc. Edinb. Math. Soc. (2) 52 (2009), 241-262.
  13. A. Lomtatidze, S. Mukhigulashvili, J. Šremr, Nonnegative solutions of the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type, Math. Comput. Modelling 47 (2008), No. 11-12, 1292-1313.
  14. J. Šremr, Weak theorems on differential inequalities for two-dimensional functional differential systems, Port. Math. 65 (2008), No. 2, 157-189.
  15. J. Šremr, Some remarks on linear partial functional-differential inequalities of hyperbolic type, Ukrain. Math. Zh. 60 (2008), No. 2, 283-292, in Russian.
  16. R. Hakl, J. Šremr, On the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators, Nonlinear Oscil. 10 (2007), No. 4, 569-582.
  17. A. Lomtatidze, Z. Opluštil, J. Šremr, On a nonlocal boundary value problem for first order linear functional differential equations, Mem. Differential Equations Math. Phys. 41 (2007), 69-85.
  18. J. Šremr, Solvability conditions of the Cauchy problem for two-dimensional systems of linear functional differential equations with monotone operators, Math. Bohem. 132 (2007), No. 3, 263-295.
  19. J. Šremr, On the Cauchy type problem for systems of functional differential equations, Nonlin. Anal. 67 (2007), No. 12, 3240-3260.
  20. A. Rontó, J. Šremr, Equivalent solutions of nonlinear equations in a topological vector space with a wedge, J. Inequal. Appl. 2007 (2007), ID 46041, 1-25.
  21. J. Šremr, On the Cauchy type problem for two-dimensional functional differential systems, Mem. Differential Equations Math. Phys. 40 (2007), 77-134.
  22. J. Šremr, On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators, Fasc. Math. 37 (2007), 87-108.
  23. J. Šremr, A note on two-dimensional systems of linear differential inequalities with argument deviations, Miskolc Math. Notes 7 (2006), No. 2, 171-187.
  24. J. Šremr, On systems of linear functional differential inequalities, Georgian Math. J. 13 (2006), No. 3, 539-572.
  25. S. Mukhigulashvili, J. Šremr, On a two-point boundary value problem for the second order linear functional differential equations with monotone operators, Func. Differ. Equ. 13 (2006), No. 3-4, 519-537.
  26. S. Mukhigulashvili, J. Šremr, On the solvability of the Dirichlet problem for nonlinear second-order functional-differential equations, Differ. Equ. 41 (2005), No. 10, 1425-1435.
  27. A. Rontó, J. Šremr, Abstract differential inequalities and the Cauchy problem for infinite-dimensional linear functional differential equations, J. Inequal. Appl. 2005 (2005), No. 3, 235-250.
  28. R. Hakl, A. Lomtatidze, J. Šremr, Solvability of a periodic type boundary value problem for first order scalar functional differential equations, Arch. Math. (Brno) 40 (2004), No. 1, 89-109.
  29. R. Hakl, A. Lomtatidze, J. Šremr, On nonnegative solutions of a periodic type boundary value problem for first order scalar functional differential equations, Func. Differ. Equ. 11 (2004), No. 3-4, 363-394.
  30. J. Šremr, P. Šremr, On a two-point boundary value problem for first order linear differential equations with a deviating argument, Mem. Differential Equations Math. Phys. 29 (2003), 75-124.
  31. R. Hakl, A. Lomtatidze, J. Šremr, On a boundary-value problem of antiperiodic type for first-order nonlinear functional differential equations of non-Volterra type, Nonlinear Oscil. 6 (2003), No. 4, 535-559.
  32. R. Hakl, A. Lomtatidze, J. Šremr, On an antiperiodic type boundary value problem for first order linear functional differential equations, Arch. Math. (Brno) 38 (2002), No. 2, 149-160.
  33. R. Hakl, A. Lomtatidze, J. Šremr, On a boundary-value problem of periodic type for first-order linear functional differential equations, Nonlinear Oscil. 5 (2002), No. 3, 408-425.
  34. R. Hakl, A. Lomtatidze, J. Šremr, On a periodic type boundary value problem for first order nonlinear functional differential equations, Nonlin. Anal. 51 (2002), 425-447.
  35. R. Hakl, A. Lomtatidze, J. Šremr, On constant sign solutions of a periodic type boundary value problem for first order scalar functional differential equations, Mem. Differential Equations Math. Phys. 26 (2002), 65-90.
  36. R. Hakl, A. Lomtatidze, J. Šremr, Solvability and unique solvability of a periodic type boundary value problem for first order scalar functional differential equations, Georgian Math. J. 9 (2002), No. 3, 525-547.
Preprints
  1. J. Šremr, On the Darboux problem for linear hyperbolic functional-differential equations, Institute of Mathematics, AS CR, Preprint IM-2011-9 (2011).
    Electronic reprint
  2. J. Šremr, On the Cauchy problem for linear hyperbolic functional-differential equations, Institute of Mathematics, AS CR, Preprint 145 (2008).
    Electronic reprint
  3. J. Šremr, A note on absolutely continuous functions of two variables in the sense of Carathéodory, Institute of Mathematics, AS CR, Preprint 144 (2008).
    Electronic reprint
  4. J. Šremr, On the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators, Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 162 (2005).
    Electronic reprint
  5. J. Šremr, On the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type, Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 161 (2005).
    Electronic reprint
  6. S. Mukhigulashvili, A. Lomtatidze, J. Šremr, Nonnegative solutions of the characteristic initial value problem for linear partial functional-differential equations of hyperbolic type, Mathematical Institute, Academy of Sciences of the Czech Republic, Preprint 160 (2005).
    Electronic reprint
To appear
Others
  1. K. Pellant, J. Šremr, J. Mejzlík, A. Pellant, Modelování přenosových charakteristik zevního zvukovodu, Sborník semináře "Interakce a zpětné vazby" 2000, UT AV Praha, 2000.
  2. K. Pellant, J. Mejzlík, A. Pellant, J. Šremr, The Computational Procedure of Selected Acoustic Characteristics of the External Ear Canal, AAO-HNSF, 2000.
  3. K. Pellant, J. Mejzlík, A. Pellant, J. Šremr, Berechnung der akustischen parameter des auseren gehorganges an einem mathematischen model, Hals-Nasen-Ohrenarzte, Marburg, 2000.