next up previous contents
Next: Axisymmetric solution, TUBE7P1 Up: Plasticity Previous: OUTPUT

  
Using the penalty method

Problem description: Consider an elasto-plastic analysis of the thick-wall tube shown. Compute stress distribution under plane strain conditions using i) the axisymmetric 8-node elements and ii) the 3D elements with the symmetry condition enforced by the penalty method. Compare the results.

\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=6cm\epsffile{tubep1.ps}
\end{figure}

Mesh: Use the following element types:
ITE=7--see appendix A.3, ten quadrilaterals
ITE=56--see appendix B.5, ten hexahedra.
Material properties: $E=2\times 10^5$ MPa, $\nu=0.3$, $\sigma_Y=400$ MPa,
Prandtl-Reuss-von Mises elastic-perfectly plastic model.
Support: Plane strain condition.
Loading: The internal pressure p=287.47 MPa.
Solution: Denote by x the radial coordinate, r=1m the inner radius, rY the radius of plastic zone, and R=2m the outer radius of the tube, respectively. The elastic solution valid in the domain $x\ge r_Y$ satisfying $\sigma_r(R)=0$ at the boundary takes the form

 \begin{displaymath}
\begin{array}{rcl}
\sigma_r&=&C[1-\left(\frac{R}{x}\right)^2...
...}{x}\right)^2]\\
\sigma_o&=&\nu(\sigma_r+\sigma_t)
\end{array}\end{displaymath} (V.1)

C is a constant to be determined from the yield condition $\sigma_e(r_y)=\sigma_Y$. Substituting (V.1) into von Mises' function $\sigma_e$ with x=rY, we get

 \begin{displaymath}
C(r_y)=\sigma_Y
\left[(1-2\nu)^2+3\left(\frac{R}{r_Y}\right)^4\right]^{-\frac{1}{2}}
\end{displaymath} (V.2)

A closed form solution in the plastic zone x<rY can only be obtained for Tresca's condition or if $\nu=1/2$. With von Mises's criterion and $\nu=0.3$ we must resort to some simplifying assumptions.

The state of plane strain enforces

 \begin{displaymath}
\epsilon_o=\epsilon_o^e+\epsilon_o^p=
\frac{1}{E}[\sigma_o-\nu(\sigma_r+\sigma_t)]+\epsilon_o^p=0
\end{displaymath} (V.3)

At the elastic-plastic interface we have $\epsilon_o^p=0$, which gives

 \begin{displaymath}
\sigma_o=\nu(\sigma_r+\sigma_t)~~\mbox{at}~~x=r_Y
\end{displaymath} (V.4)

If the loading approaches its plastic limit, the stress components cease to change, therefore $\mbox{\boldmath$\dot\epsilon$ }^e={\bf0}$ and (V.3) requires that $\dot\epsilon_o=\dot\epsilon_o^p=0$. Using the Prandtl-Reuss equations

 \begin{displaymath}
\mbox{\boldmath$\dot\epsilon$ }^p=\frac{3}{2}\frac{\dot\epsilon_p}{\sigma_Y}{\bf S}
\end{displaymath} (V.5)

and calculating the axial component of deviatoric stress tensor ${\bf S}$ we derive

 \begin{displaymath}
S_o=\sigma_o-\textstyle\frac{1}{3}(\sigma_r+\sigma_t+\sigma_o)=0
\end{displaymath} (V.6)

Hence

 \begin{displaymath}
\sigma_o=\textstyle\frac{1}{2}(\sigma_r+\sigma_t)~~
\mbox{for pronounced yielding}
\end{displaymath} (V.7)

Equations (V.4) and (V.7) suggest that the axial stress is bounded in the plastic zone by

 \begin{displaymath}
\nu(\sigma_r+\sigma_t)<\sigma_o<\textstyle\frac{1}{2}(\sigma_r+\sigma_t)
\end{displaymath} (V.8)

when $\sigma_o=\nu(\sigma_r+\sigma_t)$ at x=rY whereas the upper bound is approached in a limit as $\epsilon_p\to\infty$.

Now, an approximation to the yielding function $\sigma_e$ is made by assuming

 \begin{displaymath}
\sigma_o=\textstyle\frac{1}{2}(\sigma_r+\sigma_t)~~\mbox{for}~~x<r_Y
\end{displaymath} (V.9)

Setting $\sigma_e=\sigma_Y$ we obtain the yield condition in the form

 \begin{displaymath}
\sigma_t-\sigma_r=\frac{2}{\sqrt{3}}\sigma_Y~~\mbox{for}~~x<r_Y
\end{displaymath} (V.10)

In view of (V.4) the maximum deviation should be expected in the vicinity of the elastic-plastic boundary. The error can easily be estimated by inserting elastic solution (V.1), (V.2) into the expression

 \begin{displaymath}
\sigma_t-\sigma_r=2\sigma_Y
\left[(1-2\nu)^2\left(\frac{R}{r_Y}\right)^4+3\right]^{-\frac{1}{2}}
~~\mbox{at}~~x=r_Y
\end{displaymath} (V.11)

Clearly, if $\nu=0.5$ the right-hand sides of (V.10) and (V.11) are coincident. In this example $\nu=0.3$, R/rY=2/1.5, thus

 \begin{displaymath}
\sigma_t-\sigma_r=\frac{2}{1.87}\sigma_Y~~\mbox{at}~~x=r_Y
\end{displaymath} (V.12)

Comparison with the factor $2/\sqrt{3}$ shows that (V.10) is a good approximation to the yield condition at any point in the plastic zone.

Solving the equilibrium equations

 \begin{displaymath}
x\frac{\,\mbox{\rm d}\sigma_r}{\,\mbox{\rm d}x} +\sigma_r-\sigma_t=0
\end{displaymath} (V.13)

together with (V.10) and the boundary condition $\sigma_r(r)=-p$ yields

 \begin{displaymath}
\begin{array}{rcl}
\sigma_r &=& -p+\displaystyle\frac{2}{\sq...
...2}{\sqrt{3}}\sigma_Y(1+\displaystyle\ln\frac{x}{r})
\end{array}\end{displaymath} (V.14)

The relationship between p and rY can be established by equating (V.1)1 and (V.14)1 at x=rY, from which

 \begin{displaymath}
\frac{p}{\sigma_Y}=
\left[\left(\frac{R}{r_Y}\right)^2-1\rig...
...t)^4\right]^{-\frac{1}{2}}
+\frac{2}{\sqrt{3}}\ln\frac{r_Y}{r}
\end{displaymath} (V.15)

In this example we choose rY=1.5m, thus $p=287.47\,$MPa.

The estimate of $\sigma_o$ given by (V.9) is satisfactory for the approximation of the yielding function but it would have been very inaccurate for the calculation of $\sigma_o(x)$. Fortunately, a second-order correction can now be introduced by applying the Prandtl-Reuss equations.

We use (V.9) and (V.14) as a first approximation to compute the deviatoric stress

 \begin{displaymath}
\begin{array}{rcr}
S_r &=& -\sigma_Y/\sqrt{3}\\
S_t &=& \sigma_Y/\sqrt{3}\\
S_o &=&0
\end{array}\end{displaymath} (V.16)

Since the deviator is independent of plastic strain the Prandtl-Reuss equations (V.5) may easily be integrated

 \begin{displaymath}
\begin{array}{rcr}
\epsilon_r^p &=& -\epsilon_p\sqrt{3}/2\\ ...
...n_t^p &=& \epsilon_p\sqrt{3}/2\\
\epsilon_o^p &=&0
\end{array}\end{displaymath} (V.17)

By virtue of (V.3) the total strain components are computed as

 \begin{displaymath}
\begin{array}{rcl}
\epsilon_r &=&\displaystyle\frac{1-\nu^2}...
...\sigma_r]+\displaystyle\frac{\sqrt{3}}{2}\epsilon_p
\end{array}\end{displaymath} (V.18)

and substituted into compatibility condition

 \begin{displaymath}
x\frac{\,\mbox{\rm d}\epsilon_t}{\,\mbox{\rm d}x}+\epsilon_t-\epsilon_r=0
\end{displaymath} (V.19)

With the aid of (V.14) and after some manipulations the differential equation for cumulated plastic strain $\epsilon_p$ is obtained

 \begin{displaymath}
-x\frac{\,\mbox{\rm d}\epsilon_p}{\,\mbox{\rm d}x}=2\epsilon_p+\frac{8(1-\nu^2)}{3E}\sigma_Y
\end{displaymath} (V.20)

Solving (V.20) with the boundary condition $\epsilon_p(r_Y)=0$ we arrive at

 \begin{displaymath}
\epsilon_p=\frac{4(1-\nu^2)}{3E}\sigma_Y
\left[\left(\frac{r_Y}{x}\right)^2-1\right]
\end{displaymath} (V.21)

Once the cumulated plastic strain has been calculated we receive a better estimate of $\epsilon_o^p$. Integration of the Prandtl-Reuss equations (V.5) leads to

 \begin{displaymath}
\epsilon_o^p=\frac{1}{\sigma_Y}\int_0^{\epsilon_p}
[\sigma_o...
...}{\sigma_Y}[\sigma_o-\textstyle\frac{1}{2}(\sigma_r+\sigma_t)]
\end{displaymath} (V.22)

Finally, $\sigma_o$ is resolved from (V.3) as

 \begin{displaymath}
\sigma_o=\frac{1}{2}(\sigma_r+\sigma_t)
\frac{2\nu\sigma_Y+\epsilon_p}{\sigma_Y + E \epsilon_p}
\end{displaymath} (V.23)

Note that $\sigma_o=\nu(\sigma_r+\sigma_t)$ if $\epsilon_p=0$ and $\sigma_o=\frac{1}{2}(\sigma_r+\sigma_t)$ as $\epsilon_p\to\infty$.

The results of numerical analysis and the analytical solution described by eqns. (V.1),(V.2), (V.14) and (V.23) are shown in figure.


\begin{figure}
\centering\hspace{0pt}
\epsfclipon\epsfxsize=9cm\epsffile{tube7pp1.ps}
\end{figure}



 
next up previous contents
Next: Axisymmetric solution, TUBE7P1 Up: Plasticity Previous: OUTPUT