Group members:
Michal Bittner (FZÚ), Svatopluk Civiš (ÚFCH), František Dousek (ÚFCH), Věra Hamplová (FZÚ), Jaromír Hlavatý (ÚFCH), Dagmar Chvostová (FZÚ), Pavel Janda (ÚFCH), Libor Juha (FZÚ), Pavel Kubát (ÚFCH), Martin Kalbáč (ÚFCH), Karel Micka (ÚFCH), Hana Pelouchová (ÚFCH), Jan Šubrt (ÚACh), Jiří Vacík (ÚJF), Vladimír Vorlíček (FZÚ), Jan Weber (ÚFCH), Markéta Zukalová (ÚFCH)
Main Research Subjects:
Synthesis of well-defined carbonaceous nanostructures, i.e. organized fullerene films, carbon nanotubes (single-walled as well as double-walled NTs – SWNT and DWNT), and peapods (i. e. endohedral complexes of fullerenes and NT). Exploring and understanding the mechanisms of electron-transfer processes in organized thin films of fullerenes, SWNT, DWNT, and peapods, induced and studied by chemical and electrochemical techniques. Combination of both strategies to explore details of doping mechanisms, e.g. by chemical doping followed by electrochemical doping. Application of electron transfer reactions for tuning of electronic structure of fullerenes, SWNT and peapods, which will, subsequently, allow to elaborate spectroelectrochemical methods of structural characterization and analysis of the materials. Photochemical, radiation-chemical, and high-temperature thermochemical processing of the materials also applied to tailoring their properties. Nanostructuring of highly organized fulleride films on atomically defined substrates. Fullerene-metal systems investigated with respect to the differences between endohedral (e.g. Dy@C82) and exohedral (e.g. NiC60 composites) complexes of fullerene cages and metal atoms.
Selected Specific Equipment:
S. Civiš et al. (ÚFCh): ArF and XeCl excimer lasers; vacuum interaction chamber equipped with ion mass spectrometers; UV-Vis ICCD time-resolved spectrometry. L. Juha et al. (FZÚ): AFM-STM (Dimension 3100 + NanoScope IV, Veeco; 10-20 % of capacity in the newly established Nanoscopy laboratory is intended to be devoted to this program) and surface profiler (Alpha-Step 500, Tencor); coherent as well as incoherent sources of intense XUV radiation; near-infrared lasers (cw as well as pulsed iodine lasers, TiS and Nd:YAG lasers, and MOPO); vacuum interaction chambers. HPLC system fully equipped for analysis of fullerenes and their derivatives. Raman spectra: an Ar+ laser (514 nm) microbeam in the usual backscattering geometry (Reni¬shaw Ramascope Model 1000). L. Kavan et al. (ÚFCh): Laboratory for synthesis of nanomaterials (2 vacuum lines with turbomolecular pump, glove box, autoclaves, ultracentrifuge, vacuum furnaces etc.), AFM-STM, FTIR, UV-Vis-NIR, XRD, ECQM, two potentiostats (interfaced to glove box). J. Šubrt (ÚACh): HRTEM, SEM. J. Vacík et al. (ÚJF): CCD/computer aided optical microscope with sample temperature programming and ion spectrometer; vacuum system for deposition of the fullerene thin films and co-deposition of fullerene-metal composites, (heavy) ion source (Tandetron accelerator will be purchased in 2004) for characterization and modification of composite films.
Additional recent selected publications by group members:
• J. Vacík, H. Naramoto, K. Narumi, S. Yamamoto, K. Miyashita: Pattern formation induced by co-deposition of Ni and C60 on MgO(100), J. Chem. Phys. 114, 9115-9119 (2001)
• J. Vacik, H. Naramoto, K. Narumi, S. Yamamoto, H. Abe: RBS and SEM analysis of the nickel-fullerene hybrid systems, Nucl. Instrum. Meth. B 206, 395-398 (2003)
• H. Naramoto, Xiaodong Zhu, Yonghua Xu, K. Narumi, J. Vacik, S. Yamamoto, K. Miyashita: Allotropic conversion of carbon-related films by using energy beams, Phys. Solid States 4, 668-673 (2002)
• J. Vacik, H. Naramoto, K. Narumi, S. Yamamoto, H. Abe: Study of the nickel-fullerene nano-structured thin films, Nucl. Instrum. Meth. B (2004), in press
• J. Vacík, H. Naramoto, S. Kitazawa, S. Yamamoto, L. Juha: Laser-induced phase separations of Ni-C60 composite, J. Phys. Chem. Solids, submitted (2004)
• L. Juha, B. Ehrenberg, S. Couris, E. Koudoumas, V. Hamplová, Z. Pokorná, A. Müllerová, M. Pavel: Fullerene Decomposition Induced by Near-infrared Laser Radiation Studied by Real-time Turbidimetry, Chem. Phys. Lett. 313, 431-436 (1999).
• L. Juha, B. Ehrenberg, S. Couris, E. Koudoumas, S. Leach, V. Hamplová, Z. Pokorná, A. Müllerová, P. Kubát: Comparison of photochemical reactivity of C60 and higher fullerenes (C70, C76, and C84) dissolved in tetrachloroethylene, Chem. Phys. Lett. 335, 539-544 (2001)
• B. Steeg, L. Juha, J. Feldhaus, S. Jacobi, R. Sobierajski, C. Michaelsen, A. Andrejczuk, J. Krzywinski: Total reflection amorphous carbon mirrors for vacuum ultraviolet free electron laser, Appl. Phys. Lett. 84, 657-579 (2004)
• J. Hlavatý, L. Kavan, K. Okabe, A Oya: Carbonaceous polymers and nanotubes from alpha-omega dialkali hexatriynides, Carbon 40, 1147-1150 (2002)
• A. Touzik, H. Hermann, P. Janda, L. Dunsch, K. Wetzig: Nanostructuring of potassium fulleride layers, Europhys. Lett. 60, 411 (2002)
• L. Kavan, P. Janda, J. Weber: Surface modification of PTFE by magnesium amalgam, J. Mater. Sci. 36, 879-885 (2001)
• J. Hlavaty, J. Rathouský, A. Zukal, L. Kavan: Carbonization of 1,4-diiodo1,3-butadiyne and 1-iodo1,3,5-hexatriyne inside the siliceous molecular sieve MCM41, Carbon 39, 53-60 (2001)
• L. Kavan, P. Rapta, L. Dunsch: In situ Raman and Vis NIR spectroelectrochemistry at single-walled carbon nanotubes, Chem. Phys. Lett. 328, 363-368 (2000)
• P. Janda, T. Krieg, L. Dunsch: Nanostructuring of highly ordered C60 films by charge transfer, Adv. Mater. 17, 1434 (1998) |